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A crystallographic procedure is given for constructing a dislocation of given Burgers vector in any 
crystal structure. The theory is applied to glissfle dislocations in the c.p.h, and diamond structures, 
and to sessile dislocations in the f.c.c, and b.c.c, lattices. 

Introduction 

Given tha t  a dislocation has the form of a straight 
line lying in a particular lattice plane, referred to 
hereafter as the slip plane, with a prescribed Burgers 
vector b, where b is a lattice vector in this plane, 
it  is well understood tha t  there are two degrees of 
freedom at our disposal in the construction of the dis- 
location and three in its crystallographic description. 
For the direction of the dislocation line may be tha t  of 
any lattice vector d in the slip plane, and the dislo- 
cation plane* may  be any lattice plane (other than the 
slip plane) containing d; if p is any lattice vector in 
the dislocation plane (other than d), a map of the 
plane p, b--referred to hereafter as the elevation 
plane--provides the most convenient and suggestive 
picture of the lattice distortion. I t  is the purpose of 
the present paper to analyse how the crystallographic 
construction of the dislocation depends on the choice 
of the dislocation plane, to show how the description 
depends on the choice of the elevation plane, and to 
apply the results to the more general dislocation con- 
sisting of a sequence of straight-line segments of dif- 
fering diroction~, The an~lysi~ is extended ~0 any 
crystal structure, however complex, and should hence 
provide the theory of dislocations with a rigorous 
crystallographic setting which is at present lacking. 

Crysta l lographic  construct ion 

According to the preceding considerations, we set up 
a triplet of vectors b, d, p at any lattice point © of 

* This may be formally defined as the lattice plane parallel 
to which half-planes are inserted or removed. 

the dislocation line: b is a given lattice vector in the 
slip plane; d lies in the slip plane, but  is otherwise 
arbitrary, and defines the dislocation line through ©; 
p does not lie in the slip plane, but  is otherwise ar- 
bitrary, together with d defining the dislocation plane 
and together with b defining the elevation plane. The 
slip properties of the dislocation depend only on b. 
For a given b, the construction of the dislocation 
depends on the choice of the dislocation plane. In  the 
simplest possible case, the vectors b, d, p constitute 
a primitive triplet. This implies tha t  the stacking 
pat tern of the dislocation planes along b is 

. . . 1 1 1 1 1 . . . ;  

removal or insertion of a half-plane does not alter 
this stacking at  distances far removed from ©, and 
hence enables us to construct the dislocation in the 
usual manner (Cottrell, 1953). The stacking pat tern  
of the elevation planes along d is 

. . . 1 1 1 1 1  . . . ,  

so tha t  the map of only one such plane suffices for a 
complete description of the lattice distortion. Finally, 
to follow the disturbance along the dislocation line, 
a map of the slip plane is also necessary. 

If b, d, p do not constitute a primitive triplet, e.g. 
the parallelepiped defined by  them contains a lattice 
point in the interior or on one of the sides, i t  is con- 
venient to consider three distinct possibilities for the 
situation of this point:  

(1) I t  lies in the parallelogram d, p, as illustrated in 
Fig. l(a). In  this case the stacking of the elevation 
planes along d is 
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Fig. 1. (a) Dislocation plane showing . . .  1 2 1 2 . . .  stacking of elevation plane traces. (b) Elevat ion plane showing 

removal of two half-planes. (c) Stacking 1 2 1 2 2 1 2 produced by  removing one half-plane. 

. . .  1 2 1 2 . . . ,  

so tha t  the maps of two successive such planes are 
required for a complete description. On the other hand, 
the stacking of the dislocation planes along b is still 

. . . 1 1 1 1 1 . . . ,  

so tha t  the usual construction of removing or inserting 
a half-plane suffices. 

(2) I t  lies within the parallelogram b, p, as illus- 
t ra ted in Fig. l(b), in which case the stacking of the 
dislocation planes along b is 

. . . 1 2 1 2 1 2  . . . .  

Removal or insertion of a half-plane alters this stack- 
ing to 

. . .  1 2 1 2 2 1 2 1  . . . ,  

and hence produces a dislocation of Burgers vector b/2. 
The new stacking is energetically unfavourable except 
in certain special cases, so tha t  the existence of a dis- 
location of this kind* is most improbable. Removing or 
inserting two half-planes restores the stacking 

. . . 1 2 1 2  . . . .  

as illustrated in Fig. l(b), and hence produces a dis- 
location of Burgers vector b. As regards the elevation 
planes, their stacking along d is 

. . . 1 1 1 1 1 . . . ,  

so tha t  only one map is required. 
(3) I t  lies within the interior of the parallelepiped 

and not on one of the sides. In this case the stacking 
of the dislocation planes along b, and of the elevation 
planes along d, is 

. . . 1 2 1 2 . . . ,  

* Such dislocations are referred to as imperfect dislocations 
since b/2 is not  a lattice vector. 

so tha t  a combination is required of the construction 
(1) and of the description (2). 

We now show how to construct a dislocation of 
Burgers vector b, which (Fig. 2) consists of a sequence 

Fig. 2. Dislocation line including pure screw segment 0 3 0 4 .  

of straight-line segments. At  the point On, initiating 
the segment OnO~+l having the direction of the lattice 
vector dn, we examine the parallelepiped defined by 
b, d~, p;  if this is primitive, we remove or insert the 
strip of dislocation plane d~, p standing on 0~0~+1; 
if it contains a lattice point L in the interior, we must  
also remove or insert the parallel strip passing through 
L. The vectors b, p are the same for each initiating 
point On, i.e. the elevation planes are parallel for each 
segment of the dislocation line, thus enabling us to 
follow completely the alteration in structure from one 
segment to the next. An interesting restriction on  d n 
is suggested by the analysis, viz. tha t  the number of 
interior points within the parallelepiped b, d~, p should 
be constant for the dislocation line, e.g. if b, d~, p is 
primitive we should expect b, d e, p and all succeeding 
triplets to be primitive. This follows from the con- 
sideration tha t  an elaborate physical mechanism would 
be required for varying the number of parallel strips 
of dislocation plane to be removed or inserted on 

55* 
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passing from one segment to the next.* The extreme 
case d ,  llb is possible, and defines a segment O.O.+z 
of pure screw orientation; the extreme case d n. b = 0 
defines a segment 0~0n+z of pure edge orientation; 
intermediate cases may be regarded as the super- 
position of pure screw and pure edge orientations. 

E x a m p l e s  of c.p.h, and d i a m o n d  dis locat ions  

i f  the structure consists of two interpenetrating 
lattices, an A.latt ice and a B-lattice, we take b, d, p 
to be lattice vectors of the A-lattice and emanating 
from an A-point;  no mat ter  how b, d, p are chosen, 
there always exists on B-point within the parallel- 
epiped b, d, p so that ,  in general, at least two half- 
planes must  be removed to maintain a constant Bur- 
gers vector b along a dislocation line. Sometimes we 
can arrange for the B-point to fall within the parallelo- 
gram d, p;  in this case, the stacking of the dislocation 
planes along b is 

. . . 1 1 1 1 1 1 . . . ,  

and therefore only one removal or insertion suffices. 
To determine such planes, referred to hereafter as 
AB-planes, we make use of the following theorem: 
if the A-lattice is referred to a primitive unit cell 
a, b, c which contains a B-point at xa+yb+zc, the 
A-plane (hid) passes through B-points if hx+Icy÷lz is 
an integer (Jaswon & Dove, 1955). Thus the c.p.h. 
structure may  be referred to a primitive hexagonal 
unit  cell, with a B-point at [~, ½, 0, ½], in which case 
the AB-planes are (1210), as illustrated in Fig. 3(a); 
these are singly stacked along the direction of the slip 
vector b = [1, 0, 0, 0] lying in the basal plane (0001), 

* Formal geometry alone does not, of course, determine the 
crystaJlographic direction of least energy for a given b, but 
is an important factor which should be taken into considera- 
tion. 

as illustrated in Fig. 3(b), and hence qualify as the 
most likely dislocation_ planes for this mode of slip. 
The intersection of (1210) with (0001) defines the dis- 
location direction d -- [1, 0, 1, 0]. As is apparent  from 
Fig. 3(a), the stacking of the dislocation planes along 
d is 

. . . 1 2 1 2 . . .  

so tha t  maps of two successive such planes are neces- 
sary (Fig. 3(c)). Since (1210) are the only AB-planes 
in this structure, any deviation from the direction 

m 

[1, 0, 1, 0] implies the removal of at least two parallel 
strips of dislocation plane corresponding to the new 
segment, and is hence unlikely, bearing in mind the 
considerations of the preceding paragra_ph, i f  so, the 
restriction to the straight line [1, 0, 1, 0] may  be 
removed only by introducing segments of pure screw 
orientation.* 

The diamond structure may be referred to a f.c.c. 
structure cell, with a B-point at  [~, ¼, ¼], in which 
case the AB-planes are (110) (Fig. 4(a)). These are 
perpendicular to (111), and singly s t acked  along the 
direction of the vector b = ½[1, 0, 1], which qualifies 
as the most likely slip vector (Fig. 4(b)). 

As shown in Fig. 4(a), no less than three successive 
elevation maps are required for a complete description. 
An alternative possibility for slip is b ' - - ½ [ 2 ,  1, 1], 
but  this should not be expected to compete with b 
for the following reasons: (1) b '  > b, so tha t  the energy 
associated with b '  exceeds the energy associated 
with b. (2) The AB-planes ( l i0) ,  which are the most 
likely dislocation planes, are triply stacked along b '  
but  only singly stacked along b (Fig. 4(b)). (3) Un- 
like the case with the f.c.c, lattice, the reaction path  

* The planes (1120), (3110) are erystallographically equiva- 
lent to (1210); the former intersects the basal plane along 
d" = [1, 1, 0, 0] and is singly stacked along b ---- [1, 0, 0, 0]. 
This means that segments of direction d' are also allowed. 
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(a) 

Fig. 3. (a) Map of c.p.h. (1310) plane showing arrangement of A- and B-points and consequent . . .  1 2 1 2 . . .  stacking of 
elevation planes. 

(b) C.p.h. (0001) plane showing Burgers vector b ---- [1, 0, 0, 0] and dislocation line d ---- [1, 0, i,  0]. The direction d '  is 
crystallographically equivalent to d, defining the alternative dislocation p|ane (1130). 

(c) Filled circles define map of the first of a pair of c.p.h, elevation planes; open circles are the projection of the second 
of the pair along the direction d. 
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Fig. 4. (a) Diamond (110) dislocation plane showing arrangement of A- and B-points and . . .  1 2 3 1 2 3  . . .  stacking of 
elevation planes. 

(b) Diamond (111) slip plane showing . . .  1 2 3 1 2 3  . . .  stacking of dislocation plane traces along b '  = ½[2, 1, 1], and 
. . .  1 1 1 . . .  stacking along b = ½[1,0,1]. 

(c) Second plane of the triplet of elevation planes projected (open circles) on to the first (filled circles) along the direction d. 
(d) Third plane of the triplet projected (open circles) on to the first (filled circles) along d. 

for [21-1] glide has no advantage  compared with [10T] 
glide. I t_may be remarked,  however, tha t  the elements 
(111) [211] yield the m i n i m u m  macroscopic shear 
which could twin the lattice. 

No clear-cut evidence has ever been presented for 
the occurrence of plastic deformation in d iamond;  at  
elevated temperatures ,  slip on {111} planes has been 
reported for ge rmanium and silicon, bu t  the slip direc- 
t ion has not  yet  been decisively determined (Maddin 
& Chen, 1954). This suggests tha t  potent ia l ly  glissile 
dislocations b or b '  exist in diamond,  but  are rendered 
immobile  by  various physical  factors which are par- 
t icular ly dominan t  at low temperatures .  Discussion of 
these factors lies outside the scope of the present paper. 

Imperfect dislocations 

Under  certain circumstances we m a y  construct dis- 
locations for which b is not  a latt ice vector. These fall  
into two ma in  classes, sessile dislocations and non- 
sessile dislocations. Perhaps  the best known example  
of the former class is provided by  Frank ' s  dislocation 
of Burgers vector b = 1 1 ~[ , 1, 1] in the f.c.c, lattice, 
for which an elevation plane is mapped  in Fig. 5. The 
dislocation planes are (111), of which the stacking 
pa t t e rn  along their  normal  is 

. . .  1 2 3 . . . ;  

removing a half-plane 2 alters this to 

. . . 1 2 3 1 3 1 2 3 . . .  

in the lower half-crystal ,  thereby  producing a mono- 
layer twin faul t  3 1 3 .  This dislocation is energetically 
feasible, but  is incapable  of movement  except, possibly, 
by  the mechanism of vacancy  diffusion. Unlike the case 
with glissiles, the physical  properties of a sessile dis- 

loca t ion--as  well as its crystal lographic s t ruc tu re - -  
depend very cri t ically on the choice of the dislocation 
plane. Another  example  is provided by  Cottrell 's 
sessile dislocation b 1 1 = ~[ , 1, 2] in the b.c.c, lattice. 
Here the dislocation planes are (112), of which the 
stacking pa t te rn  along the  normal  is 

. . .  1 2 3 4 5 6 . . . ;  

insert ing two extra  half-planes 12 alters this to 

. . . 5 6 1 2 1 2 3 4 5 6 . . .  

in the upper  half-crystal ,  the reby  producing a mono- 
layer  twin faul t  2 1 2. An al ternat ive,  equivalent ,  
procedure, is to remove the four half-planes 3 4 5 6, 
thereby  altering the s tacking to 

. . . 5 6 1 2 1 2 3 4 . . .  

L~ 12 311 i lfl 

Fig. 5. F.e.e. (II0) plane, this being an elevation pl_ane for 
the sessile dislocation b = ½[1, 1, 1], (p ---- ~[1, 1, 2]). 
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in the lower half-crystal and again producing a twin 
fault. To generalize these results to planes of normal 
stacking pattern 

. . . 1 2 3 4 . . . n . . . ,  

we may form a sessile either by inserting two extra 
half-planes or by removing n - 2 .  

A complementary pair of half-dislocations, E and N, 
separated by a stacking fault of monolayer twin, are 
illustrated in Fig. 6. The dislocation E is constructed 
by inserting an extra half-plane and, in the usual way, 
allowing the atoms on its right-hand side to relax to 

I I I \ \  / /  
/ / / / / / /  

N Twin fault F 

Fig. 6. Extended dislocation consisting of a complementary 
pair of half-dislocations, E and N, separated by a mono- 
layer twin fault. E contains an extra half-plane, but not -h r. 

the equilibrium configuration characteristic of the 
perfect crystal; on the left hand side, however, the 
atoms are allowed to relax only as far as the alter- 
native equilibrium configuration characteristic of the 
twinned crystal, this being maintained over a certain 
distance, as shown. The passage of such a dislocation 
through the crystal leaves in its wake a monolayer 
twin, which could be formally produced by a homo- 
geneous translation ~b of the upper half-crystal: b is 
the unit lattice vector in the twinning direction, and 
2/d(hu) the twinning shear. The dislocation N contains 
no extra half-plane, nor is it deficient in a half-plane, 
its function being to connect the monolayer twin on 
its right with the perfect crystal on its left. Its Burgers 
vector is evidently (1-2)b.  
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The crystalline C'-form of n-hendecanoic acid, C10H21COOH, is monoclinie with a ---- 9-622, b ---- 
4-915, c = 34.18/~ and fl = 131 ° 17'. Space group C~h-P21/a; four molecules in the unit cell. The 
investigation was carried out at 23 ° C., which is only 5 ° C. below the melting point of the acid. The 
chains are packed in the common orthorhombie way, but there are large distortions: the chains are 
probably bent and twisted helically. 

Introduct ion 

Normal fa t ty  acids with an odd number of carbon 
atoms can occur in three polymorphic forms called 
A', B'  and C'. The crystal structure of the first two 
have been described by yon Sydow (1954a, b, 1955b). 

According to Stenhagen & yon Sydow (1953) the 
crystalline C'-form is only stable just below the melting 
point, and the temperature interval of stability de- 
creases with increasing chain length. Thus a short acid 
would be more favourable from the X-ray technical 
point of view, having a relatively wide interval at a 
more suitable temperature, n-Hendecanoic acid was 
chosen, the G'-form of which, according to Garner & 
Randall (1924) and de Boer (1927), exists between 
the melting point and a temperature between 12.5 ° C. 
and 17 ° C. 

Preparat ion of crys ta l s  

The n-hendecanoic acid was obtained from Prof. 
E. Stenhagen and his collaborators. Its m.p. was 
28.0-28.4 ° C. 

The G'-form is always obtained at temperatures 
between 17 ° C. and 28 ° C., but  the macrocrystalline 
shape is strongly dependent on the mode of crystal- 
lization. Crystallization from the melt always gives 
conglomerates of crystals which often contain super- 
cooled liquid acid. In order to get crystals suitable for 
X-ray work, different solvents were tried. Crystalliza- 
tion from carbon tetrachloride solution gave the best 
crystals, although not very good. They were always 
twinned, which mostly could be detected in polarized 
light, and they were often bent owing to their softness 
near the melting point. Like all the other crystal 


